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Abstract—The rising interest in assistive and autonomous 

driving systems throughout the past decade has led to an active 

research community in perception and scene interpretation 

problems like lane detection. Traditional lane detection methods 

rely on specialized, hand-tailored features which is slow and 

prone to scalability. Recent methods that rely on deep learning 

and trained on pixel-wise lane segmentation have achieved 

better results and are able to generalize to a broad range of road 

and weather conditions. However,  practical algorithms must be 

computationally inexpensive due to limited resources on vehicle-

based platforms yet accurate to meet safety measures. In this 

approach, an encoder-decoder deep learning architecture 

generates binary segmentation of lanes, then the binary 

segmentation map is further processed to separate lanes, and a 

sliding window extracts each lane to produce the lane instance 

segmentation image. This method was validated on a tusimple 

data set, achieving competitive results. 

Keywords—Deep Learning, Autonomous Driving, ADAS, Lane 
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I. INTRODUCTION  

Nowadays, autonomous vehicles and advanced driver-

assistive systems (ADAS) perception problems like obstacle 

detection and lane detection are among the hot areas in 

computer vision. Ultimately, in each task, the target is to 

reach a sufficient understanding of the scene around the 

vehicle that is enough to make safe and efficient control 

decisions on behalf of the driver. What differentiates 

autonomous vehicles perception problems from other 

computer vision problems is the required method of quality 

in terms of accuracy and speed. From one side, safety 

measures demand highly accurate algorithms to ensure 

reliability, and from the other side, the severely limited 

resources on vehicle-based systems demand computationally 

inexpensive algorithms. 

Lane detection is one of these challenging perception tasks 

today. There are many reasons to even consider lane detection 

as one of the hardest of these perception tasks. The simple 

appearance that doesn’t distinguish lane features from other 

similar objects, like road marks as well as the variant lane 

patterns, like solid, dashed, split, and merging lanes or the 

variation in lane curvature from straight to curved lanes, 

which make handwritten rules for identifying lanes 

inefficient. These challenges made many current lane 

detection solutions focus on improving accuracy without 

much care to the computational cost. 

This paper’s remain is organized as follows: A literature 

survey for previous related work can be found in Section 2. 

The approach proposed by this work from training the neural 

network to postprocessing is explained in Section 3. 

introduced. The simulation results are demonstrated and 

discussed in Section 4. Finally, the paper is concluded in 

Section 5. 

II. LITERATURE REVIEW 

Due to variations in environments where lane detection 

algorithms are applied, some assumptions always made 

might not be valid, e.g., lanes are parallel [1] [2], lanes are 

distinguishable by color [3], lanes are edges [4] thus, a 

scalable algorithm should depend on features that are general 

to most environments. 

Recently, deep learning-based lane detection methods, like 

the work done at [5], have shown outstanding performance 

due to their ability to extract lane features that are not 

predefined yet achieve state-of-the-art results on complex 

scenes particularly, convolutional neural network (CNN) 

based methods which is especially used in computer vision 

for feature extraction [6] [7] and semantic segmentation [8]. 

Due to the unique shape of lanes, there are limitations to the 

detection methods that can be applied. For example, lanes 

can’t be detected using bounding boxes, pixel-wise 

segmentation is the most appropriate approach to localize and 

parameterize lanes. 

Lane instance segmentation done by [9] [10] has also 

yielded promising results. While [11] proposed a multi-task 

encoder-decoder architecture consisting of a branch for lane 

binary segmentation and a branch for lane pixel-embeddings. 

Lane embeddings disentangle lanes by being trained using a 

clustering loss function [12] proposed earlier by the same 

authors. At inference time, lane embeddings are clustered 

using the DBSCAN clustering algorithm. Since DBSCAN 

has a high computational cost, the binary segmentation 

branch is used to mask lane embeddings to limit the space on 

which to apply clustering to the pixels labeled as a lane in the 

binary segmentation branch. 

This work is inspired by the work of [11] with 

modifications in network architecture and postprocessing 

methodology to strive for a lower computational cost while 

preserving high accuracy. 



 

III. METHODOLOGY 

A fully convolutional neural network is trained to produce 

a binary segmentation map, labeling each pixel as a lane pixel 

or non-lane pixel (background). After that, in the post-

processing phase, a collection of image processing 

techniques is applied on the binary segmentation map to 

separate lanes and assign each lane pixel a lane ID. Finally, 

all lane pixels are fitted in a 2nd or 3rd order polynomial 

function to get the lane parameterization. An overview of the 

proposed lane detection pipeline is shown in Fig. 1. 

A. Network Architecture 

SegNet [13] is a deep convolutional encoder-decoder 
architecture for robust semantic pixel-wise labeling. Input size 
is (256, 512, 3) and output size is (256, 512, 2). The output is 
a two-channel map with each one representing one of the two 
labels: lane pixel, as 1, and non-lane pixel as 0. Table 1 shows 
a comparison between the number of parameters of the 
SegNet used in this work and the dual-decoder ENET used in 
[11] and other deep learning-based methods. Although ENET 
has far less parameters than SegNet, we chose the later based 
on its good results on similar tasks. 

Table 1. Models analysis 

Model Parameters (M) 

SCNN [18] 20.72 

LaneNet(+H-net) [11] 15.98 

PointLaneNet(MoblieNet) [17] 5.33 

ENet-SAD [16] 0.98 

KeyPointsEstimation(32x16) [15] 4.4 

KeyPointsEstimation(64x32) [15] 4.39 

Proposed Model 21.67 

 

B. Binary Segmentation  

SegNet is trained to output a lane binary segmentation 
map, which indicates which pixels in the input image belong 
to a lane, any lane, and which pixel doesn’t. tuSimple is the 
dataset used to train the model for binary segmentation. Still, 

it doesn’t have its labels in the form of binary segmentation 
maps. Still, x, y coordinates of lanes, as shown in Fig. 2 thus, 
we had to construct the ground truth binary segmentation map 
by connecting each lane’s points, forming a connected line per 
lane. 

Fortunately, the dataset marks lane points even through 
objects, like cars, or when lanes are dashed or faded. Likewise, 
the constructed line per lane also passes through objects and 
on partially or totally pale lanes. This resulted in the network 
being able to identify lanes as a single, connected line even if 
it’s occluded or faded. 

As mentioned previously, the size of the output 
segmentation map is (256, 512, 2). Usually, argmax function 
is applied on segmentation maps to reduce channels number 
to one with the highest value across all channels: 

𝑎𝑟𝑔𝑚𝑎𝑥(𝑓(𝑥)) ≔ {𝑥| ∀𝑦 ∶ 𝑓(𝑦) ≤ 𝑓(𝑥) (1) 

In our case, 𝑓(𝑥) is the binary segmentation map B, and 
the function is applied channel-wise to output 0 or 1. 

 

Fig. 2: tusimple dataset image, tusimple labels (points), and SegNet labels 

(connected lines)  

Fig. 1: Overview of the proposed lane detection pipeline 



However, working on the raw lane channel and dismissing 
the non-lane channel gives more flexibility and options on the 
criteria used to consider a pixel as a lane or not. As shown in 
Fig. 3, applying argmax resulted in interconnected lanes that 
are thus harder to the segment. While applying a threshold on 
the lane channel allows us to control lanes thickness in the 
binary segmentation map. 

C. Postprocessing 

This phase aims to classify each lane pixel in the binary 
segmentation map to one lane instance exclusively i.e., 
instance segmentation of lanes. The input to the 
postprocessing phase is a (256, 512, 1) binary segmentation 
maps with lane pixels labeled as 1 and non-lane pixels labeled 
as 0. 

 

Fig. 3:  Top row: using threshold 0.2 on lane channel. Middle row: using 
threshold 0.5 on lane channel. Bottom row: using argmax on both channels 

to reduce them to one channel. 

The postprocessing phase is divided into 3 stages: 

• Separating lanes to make segmentation easier and 

more accurate 

• Applying a sliding window to extract lanes one by 

one 

• Fitting each segmented lane in a polynomial function 

Following are the stages explained in detail. 

i. Separating Lanes 

 Before applying a sliding window to extract each lane, it 
is needed to ensure that lanes are separated from each other. 
Therefore, thresholding lane channel scores were used instead 
of argmax to reduce each lane's thickness, which practically 
separated each lane while preserving its location and 
curvature. However, as seen in Fig. 4, the line of the horizon 
where all lanes merge usually has all or some lanes overlap, 
making the sliding window unable to determine which pixels 
belong to which lane. To further split lanes in this region, 
erosion is applied with kernel size= 11 on the region starting 
from the lowest y-index of lane pixels (assuming y-index 
starts from top to bottom) with a length of 60. This process is 
repeated with kernel size= 9 in the following region, from 60 
to 120. This process is illustrated in Fig. 4. After that, gaussian 

blurring is applied with kernel size= 9 to smooth lanes and 
heal holes or disconnections. Finally, erosion with kernel 
size= 3 is applied to the whole image. 

ii. Sliding Window 

From the bottom of the binary segmentation map, a wide 
sliding window moves up until the lowest y-index of lane 
pixels, assuming that the y-index starts from the top to bottom. 
A region of 5 pixels height and full width is considered at each 
step where its non-zero pixels (lane pixels) are clustered using 
DBSCAN clustering with minimum numbers of samples and 
maximum distance between cluster samples set to 30 and 8, 
respectively. 

 

Fig. 4: Top row: the input to the 1st phase of postprocessing. Middle row: 

the 4 processes applied and the region over which they are applied. Bottom 

row: the output of the 1st phase 

Each acquired cluster is considered as the lowest part of one 
of the lanes, and another sliding window is applied to extract 
that lane starting from that cluster as it belongs to the lane the 
second sliding window is tracking.  The found cluster is 
considered as the lane lowest part, and the initial center of this 
sliding window is set to equal the center of the first cluster. 
The second sliding window must move the same distance as 
the first with the same step size. However, the width of the 
second sliding window doesn’t fit the whole image width as it 
was slightly bigger than the width of the cluster and will adapt 
to the changing width of each cluster it adds to the body of the 
lane while it’s moving so that the sliding window can fully 
contain clusters and be able to change its center after each step 
to also adapt to lane curvature as well as lane width. 



After the second sliding window tracks all clusters of a lane, 
these clusters are removed from the original binary 
segmentation map before the first sliding window takes 
another step cluster of nonzero pixels again. 

iii. Fitting Lanes  

At this stage, each lane is a set of clusters of pixels 
collected by the sliding window. Since lane detection is a 
fundamental perception task in all autonomous driving or 
driving assistance systems, we must parameterize these lanes 
for the vehicle to be able to integrate this information, i.e., lane 
location and curvature, with other perception or control tasks. 

Usually, the image is projected into a ‘bird’s-eye view’ which 
is considered a better representation for lanes before fitting 
them into a polynomial function because at ‘bird’s-eye view’ 
lane curvature is reduced thus allowing the lane to fit in a 
lower order, like 2nd or 3rd, polynomial. Also, the ‘bird’s-eye 
view’ is frequently used for localization and mapping 
algorithms, so using it in lane detection makes it easier to 
integrate the resulting polynomial with other algorithms. 

Projecting the image into a ‘bird’s-eye view’ is a linear 
transformation that uses a transformation matrix as follows: 

Given a lane pixel 𝑝𝑖 = [𝑥𝑖 , 𝑦𝑖 , 1] ∈ 𝑃 , the transformed 
pixel 𝑝𝑖

′ = [𝑥𝑖
′, 𝑦𝑖

′, 1] ∈ 𝑃′  is obtained by 𝑝𝑖
′ = H𝑝𝑖 , 

where H is the transformation matrix. 

One of the problems in this approach is that H needs to be 
adapted to the exact ground-plane on which it’s applied. In 
[11] proposed a network called H-Net to output the 
transformation matrix that is suitable to the input image 
ground-plane. As a result, we used a 2nd and 3rd order 
polynomial functions to fit lanes in the normal front-camera 
view. 

IV. SIMUNLATION RESULTS 

A. Training 

The binary segmentation network is trained using 
tuSimple lane dataset [14], which is one of the large-scale 
datasets with 3626 training and 2782 testing images, under 
different weather conditions, and with up to 5 lanes per image. 
The dataset also provides the previously unlabeled 19 frames 
to the labeled frame. Annotations are in the form of x-y pairs 
for each lane in each image, as shown in Fig. 2, stacked in a 
json format. As described earlier, the json file is parsed to read 
the x-y pairs and construct a connected line per lane in a binary 
image as the label for the binary segmentation network. 

The network is trained using Adam optimizer with a batch 
size of 4 and a learning rate of 4e-4 until convergence. 

B. Evaluation  

The evaluation was done on tuSimple test set using 

accuracy as the only metric for ranking while FP and FN are 

also calculated to give more insight on performance. 

Accuracy, as defined by tuSimple benchmark [21], is 

calculated by averaging correct lane points. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ∑
𝐶𝑐𝑙𝑖𝑝

𝑆𝑐𝑙𝑖𝑝𝑐𝑙𝑖𝑝
 (2) 

Where 𝐶𝑐𝑙𝑖𝑝 is the number of the correctly predicted points in 

the given image clip, and 𝐶𝑐𝑙𝑖𝑝  is the number of requested 

(ground-truth) points in the given image clip. FP and FN are 

calculated using the following equations: 

𝐹𝑁 = 
𝑀𝑝𝑟𝑒𝑑

𝑁𝑔𝑡

  (3) 

 

 

Fig. 5: (a) initial lane clusters captured by the first sliding window. (b) the steps taken by the first sliding window (Note that it started for times, one time for each lane). 

(c) the steps taken by the second sliding window on one of the lanes after capturing its initial cluster by the first sliding window. (d) After the second sliding window 

tracked and collected all pixels belonging to some lane, it deletes them from the original image before the first sliding window starts again. 



𝐹𝑃 =
𝐹𝑝𝑟𝑒𝑑

𝑁𝑝𝑟𝑒𝑑

 (4) 

Where 𝑀𝑝𝑟𝑒𝑑 is the number of missed ground-truth lanes in 

the prediction, 𝑁𝑔𝑡 is the number of all the ground-truth lanes 

in the given image clip,  𝐹𝑝𝑟𝑒𝑑  is the number of wrongly 

predicted lanes, and 𝑁𝑝𝑟𝑒𝑑  is the number of all predicted 

lanes. Table 2 shows the results achieved compared to state-

of-the-art methods. 

Table 2. Evaluation result on tuSimple dataset 

Work Acc FP FN 

SCNN [18] 96.53% 0.062 0.0180 

LaneNet(+H-net) [11] 96.38% 0.078 0.0244 

PointLaneNet(MoblieNet) [17] 96.34% 0.046 0.0518 

ENet-SAD [16] 96.64% 0.060 0.0205 

KeyPointsEstimation(32x16) [15] 95.75% 0.027 0.0362 

KeyPointsEstimation(64x32) [15] 96.62% 0.031 0.0272 

Proposed method 91.83% 0.103 0.096 

C. Comparing with LaneNet 

This work is inspired by LaneNet [11] and the potential to use 

similar architecture integrated with low-cost postprocessing. 

However, since LaneNet has no official implementation and 

since we had to regenerate its result on the platform we have 

access to (Tesla K80 GPU) to be comparable with our results, 

we used an unofficial implementation [19] that uses the same 

method as instructed by [11] except for two differences: 

1- The architecture used in [19] for segmentation is a 

dual-decoder SegNet, while LaneNet uses a dual-

decoder ENet. 

2- LaneNet uses a second network called H-Net to 

estimate the perspective transformation matrix 

conditioned on the input image to fit the lanes more 

accurately and using a low-order polynomial 

function. The benefit of perspective transformation to 

“bird’s eye view” in lane detection was discussed in 

the “fitting lanes” Section. 

So it’s important to explicitly state that the speed results 

of LaneNet were re-generated using an unofficial 

implementation [19] to be able to compare the two methods 

on the same platform. The proposed implementation is 

available at [20]. Although accuracy was reduced in this 

method, Table 3 shows the boost in speed, which gives us 

room for further improving accuracy. 

Table 3. Comparing performance. measured on Tesla K80 GPU 

 LaneNet [11] 
Proposed 

method 

Forward pass time (ms) 13.6 10 

Postprocessing time (ms) 1352 56 

Total time (ms) 1365.6 66 

FPS 0.7 15 

 

 

Figure 6  Samples of the predictions on tuSimple test set 

V. CONCLUSION 

In this paper, a real-time method for lane instance 
segmentation is proposed, which runs at 15 FPS on Tesla K80 
GPU and achieves competitive accuracy on tuSimple 
benchmark. Many lane detection algorithms, especially deep 
learning-based methods, focus on accuracy but lack speed. 
Lane detection is a fundamental perception task in 
autonomous systems. Thus, considering the limited resources 
and real-time requirements for such systems must be a critical 
consideration for practical solutions. Inspired by recent 
instance segmentation techniques, our goal from this work is 
to integrate the use of powerful deep-learning architectures 
and techniques with inexpensive postprocessing to address 
both accuracy and speed challenges. Results and comparison 
with other state-of-the-art, mostly deep learning-based 
methods show that our method is notably faster. However, the 
current version needs optimization to increase its accuracy. 
We expect this to be achieved in future work, giving the 
tolerance obtained in speed, which can be partially traded to 
improve accuracy. 
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