

Real-Time Lane Instance Segmentation Using

SegNet and Image Processing

Gad Mohamed Gad1, Ahmed Mahmoud Annaby1, Nermin K. Negied2, and M. Saeed Darweesh2

1Undergraduate Student, School of Engineering and Applied Sciences, Nile University, Giza 12677, Egypt
2Wireless Intelligent Networks Center (WINC), Nile University, Giza 12677, Egypt

Abstract—The rising interest in assistive and autonomous

driving systems throughout the past decade has led to an active

research community in perception and scene interpretation

problems like lane detection. Traditional lane detection methods

rely on specialized, hand-tailored features which is slow and

prone to scalability. Recent methods that rely on deep learning

and trained on pixel-wise lane segmentation have achieved

better results and are able to generalize to a broad range of road

and weather conditions. However, practical algorithms must be

computationally inexpensive due to limited resources on vehicle-

based platforms yet accurate to meet safety measures. In this

approach, an encoder-decoder deep learning architecture

generates binary segmentation of lanes, then the binary

segmentation map is further processed to separate lanes, and a

sliding window extracts each lane to produce the lane instance

segmentation image. This method was validated on a tusimple

data set, achieving competitive results.

Keywords—Deep Learning, Autonomous Driving, ADAS, Lane

Detection, tuSimple, SegNet.

I. INTRODUCTION

Nowadays, autonomous vehicles and advanced driver-

assistive systems (ADAS) perception problems like obstacle

detection and lane detection are among the hot areas in

computer vision. Ultimately, in each task, the target is to

reach a sufficient understanding of the scene around the

vehicle that is enough to make safe and efficient control

decisions on behalf of the driver. What differentiates

autonomous vehicles perception problems from other

computer vision problems is the required method of quality

in terms of accuracy and speed. From one side, safety

measures demand highly accurate algorithms to ensure

reliability, and from the other side, the severely limited

resources on vehicle-based systems demand computationally

inexpensive algorithms.

Lane detection is one of these challenging perception tasks

today. There are many reasons to even consider lane detection

as one of the hardest of these perception tasks. The simple

appearance that doesn’t distinguish lane features from other

similar objects, like road marks as well as the variant lane

patterns, like solid, dashed, split, and merging lanes or the

variation in lane curvature from straight to curved lanes,

which make handwritten rules for identifying lanes

inefficient. These challenges made many current lane

detection solutions focus on improving accuracy without

much care to the computational cost.

This paper’s remain is organized as follows: A literature

survey for previous related work can be found in Section 2.

The approach proposed by this work from training the neural

network to postprocessing is explained in Section 3.

introduced. The simulation results are demonstrated and

discussed in Section 4. Finally, the paper is concluded in

Section 5.

II. LITERATURE REVIEW

Due to variations in environments where lane detection

algorithms are applied, some assumptions always made

might not be valid, e.g., lanes are parallel [1] [2], lanes are

distinguishable by color [3], lanes are edges [4] thus, a

scalable algorithm should depend on features that are general

to most environments.

Recently, deep learning-based lane detection methods, like

the work done at [5], have shown outstanding performance

due to their ability to extract lane features that are not

predefined yet achieve state-of-the-art results on complex

scenes particularly, convolutional neural network (CNN)

based methods which is especially used in computer vision

for feature extraction [6] [7] and semantic segmentation [8].

Due to the unique shape of lanes, there are limitations to the

detection methods that can be applied. For example, lanes

can’t be detected using bounding boxes, pixel-wise

segmentation is the most appropriate approach to localize and

parameterize lanes.

Lane instance segmentation done by [9] [10] has also

yielded promising results. While [11] proposed a multi-task

encoder-decoder architecture consisting of a branch for lane

binary segmentation and a branch for lane pixel-embeddings.

Lane embeddings disentangle lanes by being trained using a

clustering loss function [12] proposed earlier by the same

authors. At inference time, lane embeddings are clustered

using the DBSCAN clustering algorithm. Since DBSCAN

has a high computational cost, the binary segmentation

branch is used to mask lane embeddings to limit the space on

which to apply clustering to the pixels labeled as a lane in the

binary segmentation branch.

This work is inspired by the work of [11] with

modifications in network architecture and postprocessing

methodology to strive for a lower computational cost while

preserving high accuracy.

III. METHODOLOGY

A fully convolutional neural network is trained to produce

a binary segmentation map, labeling each pixel as a lane pixel

or non-lane pixel (background). After that, in the post-

processing phase, a collection of image processing

techniques is applied on the binary segmentation map to

separate lanes and assign each lane pixel a lane ID. Finally,

all lane pixels are fitted in a 2nd or 3rd order polynomial

function to get the lane parameterization. An overview of the

proposed lane detection pipeline is shown in Fig. 1.

A. Network Architecture

SegNet [13] is a deep convolutional encoder-decoder
architecture for robust semantic pixel-wise labeling. Input size
is (256, 512, 3) and output size is (256, 512, 2). The output is
a two-channel map with each one representing one of the two
labels: lane pixel, as 1, and non-lane pixel as 0. Table 1 shows
a comparison between the number of parameters of the
SegNet used in this work and the dual-decoder ENET used in
[11] and other deep learning-based methods. Although ENET
has far less parameters than SegNet, we chose the later based
on its good results on similar tasks.

Table 1. Models analysis

Model Parameters (M)

SCNN [18] 20.72

LaneNet(+H-net) [11] 15.98

PointLaneNet(MoblieNet) [17] 5.33

ENet-SAD [16] 0.98

KeyPointsEstimation(32x16) [15] 4.4

KeyPointsEstimation(64x32) [15] 4.39

Proposed Model 21.67

B. Binary Segmentation

SegNet is trained to output a lane binary segmentation
map, which indicates which pixels in the input image belong
to a lane, any lane, and which pixel doesn’t. tuSimple is the
dataset used to train the model for binary segmentation. Still,

it doesn’t have its labels in the form of binary segmentation
maps. Still, x, y coordinates of lanes, as shown in Fig. 2 thus,
we had to construct the ground truth binary segmentation map
by connecting each lane’s points, forming a connected line per
lane.

Fortunately, the dataset marks lane points even through
objects, like cars, or when lanes are dashed or faded. Likewise,
the constructed line per lane also passes through objects and
on partially or totally pale lanes. This resulted in the network
being able to identify lanes as a single, connected line even if
it’s occluded or faded.

As mentioned previously, the size of the output
segmentation map is (256, 512, 2). Usually, argmax function
is applied on segmentation maps to reduce channels number
to one with the highest value across all channels:

𝑎𝑟𝑔𝑚𝑎𝑥(𝑓(𝑥)) ≔ {𝑥| ∀𝑦 ∶ 𝑓(𝑦) ≤ 𝑓(𝑥) (1)

In our case, 𝑓(𝑥) is the binary segmentation map B, and
the function is applied channel-wise to output 0 or 1.

Fig. 2: tusimple dataset image, tusimple labels (points), and SegNet labels

(connected lines)

Fig. 1: Overview of the proposed lane detection pipeline

However, working on the raw lane channel and dismissing
the non-lane channel gives more flexibility and options on the
criteria used to consider a pixel as a lane or not. As shown in
Fig. 3, applying argmax resulted in interconnected lanes that
are thus harder to the segment. While applying a threshold on
the lane channel allows us to control lanes thickness in the
binary segmentation map.

C. Postprocessing

This phase aims to classify each lane pixel in the binary
segmentation map to one lane instance exclusively i.e.,
instance segmentation of lanes. The input to the
postprocessing phase is a (256, 512, 1) binary segmentation
maps with lane pixels labeled as 1 and non-lane pixels labeled
as 0.

Fig. 3: Top row: using threshold 0.2 on lane channel. Middle row: using
threshold 0.5 on lane channel. Bottom row: using argmax on both channels

to reduce them to one channel.

The postprocessing phase is divided into 3 stages:

• Separating lanes to make segmentation easier and

more accurate

• Applying a sliding window to extract lanes one by

one

• Fitting each segmented lane in a polynomial function

Following are the stages explained in detail.

i. Separating Lanes

 Before applying a sliding window to extract each lane, it
is needed to ensure that lanes are separated from each other.
Therefore, thresholding lane channel scores were used instead
of argmax to reduce each lane's thickness, which practically
separated each lane while preserving its location and
curvature. However, as seen in Fig. 4, the line of the horizon
where all lanes merge usually has all or some lanes overlap,
making the sliding window unable to determine which pixels
belong to which lane. To further split lanes in this region,
erosion is applied with kernel size= 11 on the region starting
from the lowest y-index of lane pixels (assuming y-index
starts from top to bottom) with a length of 60. This process is
repeated with kernel size= 9 in the following region, from 60
to 120. This process is illustrated in Fig. 4. After that, gaussian

blurring is applied with kernel size= 9 to smooth lanes and
heal holes or disconnections. Finally, erosion with kernel
size= 3 is applied to the whole image.

ii. Sliding Window

From the bottom of the binary segmentation map, a wide
sliding window moves up until the lowest y-index of lane
pixels, assuming that the y-index starts from the top to bottom.
A region of 5 pixels height and full width is considered at each
step where its non-zero pixels (lane pixels) are clustered using
DBSCAN clustering with minimum numbers of samples and
maximum distance between cluster samples set to 30 and 8,
respectively.

Fig. 4: Top row: the input to the 1st phase of postprocessing. Middle row:

the 4 processes applied and the region over which they are applied. Bottom

row: the output of the 1st phase

Each acquired cluster is considered as the lowest part of one
of the lanes, and another sliding window is applied to extract
that lane starting from that cluster as it belongs to the lane the
second sliding window is tracking. The found cluster is
considered as the lane lowest part, and the initial center of this
sliding window is set to equal the center of the first cluster.
The second sliding window must move the same distance as
the first with the same step size. However, the width of the
second sliding window doesn’t fit the whole image width as it
was slightly bigger than the width of the cluster and will adapt
to the changing width of each cluster it adds to the body of the
lane while it’s moving so that the sliding window can fully
contain clusters and be able to change its center after each step
to also adapt to lane curvature as well as lane width.

After the second sliding window tracks all clusters of a lane,
these clusters are removed from the original binary
segmentation map before the first sliding window takes
another step cluster of nonzero pixels again.

iii. Fitting Lanes

At this stage, each lane is a set of clusters of pixels
collected by the sliding window. Since lane detection is a
fundamental perception task in all autonomous driving or
driving assistance systems, we must parameterize these lanes
for the vehicle to be able to integrate this information, i.e., lane
location and curvature, with other perception or control tasks.

Usually, the image is projected into a ‘bird’s-eye view’ which
is considered a better representation for lanes before fitting
them into a polynomial function because at ‘bird’s-eye view’
lane curvature is reduced thus allowing the lane to fit in a
lower order, like 2nd or 3rd, polynomial. Also, the ‘bird’s-eye
view’ is frequently used for localization and mapping
algorithms, so using it in lane detection makes it easier to
integrate the resulting polynomial with other algorithms.

Projecting the image into a ‘bird’s-eye view’ is a linear
transformation that uses a transformation matrix as follows:

Given a lane pixel 𝑝𝑖 = [𝑥𝑖 , 𝑦𝑖 , 1] ∈ 𝑃 , the transformed
pixel 𝑝𝑖

′ = [𝑥𝑖
′, 𝑦𝑖

′, 1] ∈ 𝑃′ is obtained by 𝑝𝑖
′ = H𝑝𝑖 ,

where H is the transformation matrix.

One of the problems in this approach is that H needs to be
adapted to the exact ground-plane on which it’s applied. In
[11] proposed a network called H-Net to output the
transformation matrix that is suitable to the input image
ground-plane. As a result, we used a 2nd and 3rd order
polynomial functions to fit lanes in the normal front-camera
view.

IV. SIMUNLATION RESULTS

A. Training

The binary segmentation network is trained using
tuSimple lane dataset [14], which is one of the large-scale
datasets with 3626 training and 2782 testing images, under
different weather conditions, and with up to 5 lanes per image.
The dataset also provides the previously unlabeled 19 frames
to the labeled frame. Annotations are in the form of x-y pairs
for each lane in each image, as shown in Fig. 2, stacked in a
json format. As described earlier, the json file is parsed to read
the x-y pairs and construct a connected line per lane in a binary
image as the label for the binary segmentation network.

The network is trained using Adam optimizer with a batch
size of 4 and a learning rate of 4e-4 until convergence.

B. Evaluation

The evaluation was done on tuSimple test set using

accuracy as the only metric for ranking while FP and FN are

also calculated to give more insight on performance.

Accuracy, as defined by tuSimple benchmark [21], is

calculated by averaging correct lane points.

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ∑
𝐶𝑐𝑙𝑖𝑝

𝑆𝑐𝑙𝑖𝑝𝑐𝑙𝑖𝑝
 (2)

Where 𝐶𝑐𝑙𝑖𝑝 is the number of the correctly predicted points in

the given image clip, and 𝐶𝑐𝑙𝑖𝑝 is the number of requested

(ground-truth) points in the given image clip. FP and FN are

calculated using the following equations:

𝐹𝑁 =
𝑀𝑝𝑟𝑒𝑑

𝑁𝑔𝑡

 (3)

Fig. 5: (a) initial lane clusters captured by the first sliding window. (b) the steps taken by the first sliding window (Note that it started for times, one time for each lane).

(c) the steps taken by the second sliding window on one of the lanes after capturing its initial cluster by the first sliding window. (d) After the second sliding window

tracked and collected all pixels belonging to some lane, it deletes them from the original image before the first sliding window starts again.

𝐹𝑃 =
𝐹𝑝𝑟𝑒𝑑

𝑁𝑝𝑟𝑒𝑑

 (4)

Where 𝑀𝑝𝑟𝑒𝑑 is the number of missed ground-truth lanes in

the prediction, 𝑁𝑔𝑡 is the number of all the ground-truth lanes

in the given image clip, 𝐹𝑝𝑟𝑒𝑑 is the number of wrongly

predicted lanes, and 𝑁𝑝𝑟𝑒𝑑 is the number of all predicted

lanes. Table 2 shows the results achieved compared to state-

of-the-art methods.

Table 2. Evaluation result on tuSimple dataset

Work Acc FP FN

SCNN [18] 96.53% 0.062 0.0180

LaneNet(+H-net) [11] 96.38% 0.078 0.0244

PointLaneNet(MoblieNet) [17] 96.34% 0.046 0.0518

ENet-SAD [16] 96.64% 0.060 0.0205

KeyPointsEstimation(32x16) [15] 95.75% 0.027 0.0362

KeyPointsEstimation(64x32) [15] 96.62% 0.031 0.0272

Proposed method 91.83% 0.103 0.096

C. Comparing with LaneNet

This work is inspired by LaneNet [11] and the potential to use

similar architecture integrated with low-cost postprocessing.

However, since LaneNet has no official implementation and

since we had to regenerate its result on the platform we have

access to (Tesla K80 GPU) to be comparable with our results,

we used an unofficial implementation [19] that uses the same

method as instructed by [11] except for two differences:

1- The architecture used in [19] for segmentation is a

dual-decoder SegNet, while LaneNet uses a dual-

decoder ENet.

2- LaneNet uses a second network called H-Net to

estimate the perspective transformation matrix

conditioned on the input image to fit the lanes more

accurately and using a low-order polynomial

function. The benefit of perspective transformation to

“bird’s eye view” in lane detection was discussed in

the “fitting lanes” Section.

So it’s important to explicitly state that the speed results

of LaneNet were re-generated using an unofficial

implementation [19] to be able to compare the two methods

on the same platform. The proposed implementation is

available at [20]. Although accuracy was reduced in this

method, Table 3 shows the boost in speed, which gives us

room for further improving accuracy.

Table 3. Comparing performance. measured on Tesla K80 GPU

 LaneNet [11]
Proposed

method

Forward pass time (ms) 13.6 10

Postprocessing time (ms) 1352 56

Total time (ms) 1365.6 66

FPS 0.7 15

Figure 6 Samples of the predictions on tuSimple test set

V. CONCLUSION

In this paper, a real-time method for lane instance
segmentation is proposed, which runs at 15 FPS on Tesla K80
GPU and achieves competitive accuracy on tuSimple
benchmark. Many lane detection algorithms, especially deep
learning-based methods, focus on accuracy but lack speed.
Lane detection is a fundamental perception task in
autonomous systems. Thus, considering the limited resources
and real-time requirements for such systems must be a critical
consideration for practical solutions. Inspired by recent
instance segmentation techniques, our goal from this work is
to integrate the use of powerful deep-learning architectures
and techniques with inexpensive postprocessing to address
both accuracy and speed challenges. Results and comparison
with other state-of-the-art, mostly deep learning-based
methods show that our method is notably faster. However, the
current version needs optimization to increase its accuracy.
We expect this to be achieved in future work, giving the
tolerance obtained in speed, which can be partially traded to
improve accuracy.

REFERENCES

[1] Aly, M., “Real time detection of lane markers in urban streets,” in IEEE

Intelligent Vehicles Symposium, 2008, doi: 10.1109/ivs.2008.4621152.

[2] Jiang, Y., Gao, F., & Xu, G., “Computer vision-based multiple-lane

detection on straight road and in a curve,” in International Conference

on Image Analysis and Signal Processing, pp. 114-117, 2010.

[3] Kuo-Yu Chiu and Sheng-Fuu Lin., “Lane detection using color-based

segmentation,” in IEEE Proceedings. Intelligent Vehicles Symposium,

2005. doi: 10.1109/ivs.2005.1505186

[4] Lee, C., and Moon, J., “Robust Lane Detection and Tracking for Real-

Time Applications,” in IEEE Transactions on Intelligent

Transportation Systems, vol. 19, pp. 4043-4048, 2018.

[5] Li, J., Mei, X., Prokhorov, D., Tao, D., “Deep Neural Network for

Structural Prediction and Lane Detection in Traffic Scene,” in IEEE

Transactions on Neural Networks and Learning Systems, vol. 28, no. 3,

pp. 690-703, 2017, doi: 10.1109/tnnls.2016.2522428

[6] Van Gansbeke, W., De Brabandere, B., Neven, D., Proesmans, M., Van

Gool, L., “End-to-end lane detection through differentiable least-squares

fitting,” in IEEE International Conference on Computer Vision

Workshops, 2019.

[7] Zou, Q., Jiang, H., Dai, Q., Yue, Y., Chen, L., Wang, Q., “Robust Lane

Detection From Continuous Driving Scenes Using Deep Neural

Networks,” in IEEE Transactions on Vehicular Technology, vol. 69, no.

1, pp. 41-54, 2020, doi: 10.1109/tvt.2019.2949603

[8] Yang, W., Cheng, Y., Chung, P., “Improved Lane Detection With

Multilevel Features in Branch Convolutional Neural Networks,” in

IEEE Access, vol. 7, pp. 173148-173156, 2019, doi:

10.1109/access.2019.2957053

[9] Romera-Paredes, B., and Torr, P. H. S., “Recurrent instance

segmentation,” in European Conference on Computer Vision, pp. 312-

329, 2016.

[10] Zhang, Z., Schwing, A. G., Fidler, S., and Urtasun, R., “Monocular

object instance segmentation and depth ordering with cnns,” in IEEE

International Conference on Computer Vision, pp. 2614-2622, 2015.

[11] Neven, D., Brabandere, B.D., Georgoulis, S., Proesmans, M., and Gool,

L.V, “Towards End-to-End Lane Detection: an Instance Segmentation

Approach,” in IEEE Intelligent Vehicles Symposium (IV), pp. 286-291,

2018.

[12] De Brabandere, B., Neven, D., and Van Gool, L., “Semantic instance

segmentation with a discriminative loss function,” in arXiv preprint,

arXiv:1708.02551, 2017.

[13] Badrinarayanan, V., Kendall, A., and Cipolla, R., “Segnet: A deep

convolutional encoder-decoder architecture for image segmentation,”

in IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 39, no. 12, pp. 2481-24, 2017.

[14] The tuSimple lane challange, http://benchmark.tusimple.ai/

[15] Ko, Y., Jun, J., Ko, D., & Jeon, M., “Key Points Estimation and Point

Instance Segmentation Approach for Lane Detection,” in arXiv preprint,

arXiv:2002.06604, 2020.

[16] Hou, Yuenan, et al., “Learning lightweight lane detection cnns by self-

attention distillation,” in IEEE International Conference on Computer

Vision, 2019.

[17] Chen, Zhenpeng, Qianfei Liu, and Chenfan Lian. “PointLaneNet:

Efficient end-to-end CNNs for Accurate Real-Time Lane Detection,”

in IEEE Intelligent Vehicles Symposium (IV), 2019.

[18] Pan, Xingang, et al., “Spatial as deep: Spatial cnn for traffic scene

understanding,” in Thirty-Second AAAI Conference on Artificial

Intelligence, 2018.

[19] MaybeShewill-CV/lanenet-lane-detection., Retrieved 8 July 2020,

from https://github.com/MaybeShewill-CV/lanenet-lane-detection

[20] gadm21/Real-time-lane-instance-segmentation., Retrieved 8 July 2020,

from https://github.com/gadm21/Real-time-lane-instance-

segmentation.

[21] TuSimple/tusimple-benchmark. GitHub. (2020). Retrieved 29 August

2020, from https://github.com/TuSimple/tusimple-

benchmark/tree/master/doc/lane_detection.

